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Self-avoiding paths on a generalized Cayley tree 
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Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, UK 

Received 27 September 1974, in final form 27 November 1974 

Abstract. Self-avoiding paths and unrestricted or free paths are investigated on a lattice 
obtained from a Cayley tree by replacing vertices by clusters of vertices and edges by 
bundles of edges. Closed analytic expressions are obtained for the generating functions, and 
the statistics of paths up to length 25 are explored. 

1. Introduction 

The physics and chemistry of polymeric systems is a field rich in unsolved problems. 
Since the models used to describe such systems are still rudimentary, we find that many 
of the problems encountered are combinatorial in nature, leading naturally to the 
application of graph theory and related techniques (Gordon and Temple 1972). Such 
problems can usually be stated in a few words although their solution may present 
formidable mathematical difficulty. Typical of this class is the 'excluded volume' 
problem in polymer physics. 

A simple model for a linear polymer chain is the 'pearl necklace' model where the 
monomers are the beads, each joined to its neighbours by a rigid link. The chain has 
extensive flexibility by virtue of bond rotation, and under the influence of random 
thermal motion this entity will assume some 'random coil' configuration. If we suppose 
that the chain does not interact with itself, we may generally extract the relevant statistical 
parameters characterizing the spatial domain occupied by the random coil by using 
Gaussian flight statistics (Flory 1969). We now impose the condition that the chain must 
self-avoid, that is no two beads may occupy the same volume of space. Attempts to 
calculate exactly the effect on the random coil have met with rather limited success, 
although the self-consistent field treatment of a continuum model by Edwards is out- 
standing in this field (Edwards 1965). Rigorous analytical results, therefore, are few 
but there is now a substantial accumulation of evidence suggesting that distributions 
become non-Gaussian (Domb 1969). 

For reasons touched on below, the modelling of a polymer chain configuration with 
excluded volume by a self-avoiding walk or path on a crystal lattice has received much 
attention. From work by Hammersley (1957, 1961) and Kesten (1964) we have two 
important asymptotic analytical results : 

C" - f i (4P" (1) 

U, N f A n ) ~ " .  (2) 
Here C, is the total number of self-avoiding paths (SAP) of n steps, U, is the total number of 
SAP which return to a nearest neighbour of the origin after n steps, p is a constant, usually 
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called the connective constant, which is lattice-dependent and may be thought of as 
a sort of coordination number, and fi(n) and f2(n) are functions such that 

lim (fi(n))”2 = lim (f?(t~))”~ = 1. 
n+ m n- m 

Monte Carlo techniques have been used, principally by Wall er a1 (1 963), to generate 
samples of long walks (n ‘Y 100-500), a method which entails high rates of attrition. 
A method which relates more closely to the work described here has been developed 
largely by Domb and collaborators (1969) and involves performing exhaustive, exact 
enumerations of short paths (up to about 15 for 3D lattices). From the behaviour of 
these short paths, extrapolation for asymptotic properties may be carried out with 
reference to equations (1) and (2). Both the above methods rely on ingenious strategy 
and efficient programming to keep the computing times involved within reasonable 
bounds. 

Here we present a method for computing SAP with small computing effort, using 
generating functions of closed form. However, this is achieved only by the use of a 
non-physical lattice. 

2. Themethod 

We could investigate the properties of self-avoiding paths in a number of different 
situations. For their relation to polymers the best way would be to define them as 
simple curves in three-space such that two points whose separation along the curve is 
greater than some distance r never come closer than r. This idealization is too compli- 
cated to solve, as is the simplification that we consider SAP on lattices in three-space 
rather than all curves. The argument is that although the properties of the SAP on 
lattices depend on the lattice, there is basic SAP behaviour which is independent of the 
lattice. The use of lattices does not simplify the basic problem which is that of an interac- 
tion between all pairs of points on the path; it does make the SAP denumerable and thus 
open to numerical investigation on a computer. 

There is a further simplification of the problem which makes the interaction simpler 
and allows an analytic solution. That is to construct a lattice on which a SAP can only 
interact with itself if it fulfils certain conditions. On a real lattice a SAP can curve back 
on itself from anywhere, but on some lattices this is not possible. One such lattice is a 
Cayley Tree or Bethe Lattice. The tree consists of vertices each with a number of branches 
such that only the closed paths retrace themselves. A tree for z = 4 is shown in figure 1. 
The Cayley tree has proved very useful for investigating paths on lattices with the same 
coordination number z (Brinkman and Rice 1970). However, it is clear that the SAP on 
the Cayley tree are very simple and uninteresting, namely that there is exactly one be- 
tween each pair of vertices. 

We regain the interesting SAP structure by generalizing the Cayley tree, in that 
each vertex is considered as a cluster of vertices connected together and each edge 
between vertices of the old tree as a bundle of edges between the clusters. Figure 2 
shows the result of these substitutions on five vertices of the Cayley tree in figure 1. 
In figure 2 there are four tetrahedrally placed vertices in each cluster and that they are 
a generalization of one vertex is indicated by the symbol at each new vertex. The vertices 
marked by circles all came from one old vertex. The vertices marked by circles with a 
cross came from another and so forth. Each face of the tetrahedron of circles has three 
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Figure 1. A portion of a four-coordinated Cayley tree. 
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Figure 2. A portion of a generalized Cayley tree. 

edges connecting it to a face of a neighbouring tetrahedral cluster. As soon as we 
introduce this complexity into the vertices and edges of the tree the SAP become interest- 
ing. But the interaction takes place only for paths that retrace their way through the 
same clusters. This advantage makes the generating function for the SAP obtainable 
analytically. 

There are several objections to the generalized Cayley tree (GCT). The first is the 
same one as for use of the Cayley tree, namely that the lattice cannot fit in three-space 
and thus the results bear no relation to real lattices. However, in many problems the 
Cayley tree results are very similar to real lattice results. The reason for this is that 
locally the Cayley tree is very similar to a real lattice with the same z. The GCT is locally 
even more like the real lattice in that it contains clusters right out of the real lattice. 

The second objection is that the GCT is not angularly uniform. A path which enters 
a cluster needs different numbers of steps to reach neighbouring clusters, depending on 
the direction of the neighbouring cluster. This can be seen in figure 2 from the fact that 
it is shorter from A to B than to a similar point C. We feel that this problem is not great, 
and the results support this view. 
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The GCT in figure 2 is one we have used for this investigation of the SAP. Our approach 
is to define GAB(S) ,  the generating function for SAP between vertices A and B, as 

where pn is the number of SAP between A and B of length n. First we consider the case 
where A and B are both on the same tetrahedron (figure 3). If a SAP from A to B involves 
steps outside the cluster, the SAP must depart and return on one of the four groups of 
three edges which connect the cluster to other clusters. In order to account for these 
SAP, we introduce another generating function g(S) for the SAP which connect two vertices 
of the tetrahedron by an excursion into nearby clusters : 

where p; is the number of SAP of length n connecting two vertices of a face by an excursion 
on the branch of the GCT connected to that face. Note that each pair of vertices belongs 
to two faces and so can be connected by SAP excursions on two branches of the GCT. 

C 

Figure 3. A cluster in the generalized Cayley tree 

If a path leaves from a particular face, it must return to that face by the Cayley tree 
property of the GCT. A SAP can make at most one excursion out of a face because in 
doing so it uses up two of the three vertices on that face. 

Now by adding up the various SAP in the tetrahedron accounting for excursions out 
of it by g(S), we can obtain an expression for G A B ( S ) :  

GAB(S) = S + 2S2 + 2S3 + 2( 1 +4S+ 6S2)g(S) + 2(3 + lOS)g(S)’ + 8g(S)3. ( 5 )  

Now by a similar method we can obtain an equation for g(S). Figure 4 shows a tetra- 
hedron which connects to that in figure 3. We use this to obtain an equation for g(S). 
Excursions from cluster ABCD can go out of any of the four faces to a cluster like EFGH. 
For example, suppose the SAP exits from face ACD along AE, then in exactly the same 
way as it could leave ABCD by four faces it can leave EFGH by any of the three faces 
other than EFG. We can now write equations for g(s) analogous to GAB(S) by counting 
up the SAP in EFGH and using g(S) for excursions further out. The same restrictions 
apply as before and we obtain 

(6) g(S) = S3 + 2S4 + 2S5 + (S2 + 6S3 + 10S4 - l)g(S)+ (4s’ + 12S3)g(S)’ + 2S2g(S)3. 
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Figure 4. Connection between clusters in the generalized Cayley tree 

This equation is cubic in g(S) so there are three roots. However, only one root tends to 
unity as S goes to zero, so there is no ambiguity. Once we have this solution, GAB(S) 
follows by substitution in (5 ) .  

GAB(S) gives the number of SAP between two vertices on the same cluster. However 
we would like to find the number ofsAp joining vertices in different clusters. The problem 
is thus to enumerate the different ways in which a SAP can connect clusters. Referring 
to figure 1, but thinking of it now as a GCT with the vertices representing clusters and the 
edges representing bundles of edges, if the endpoints of a SAP are in different clusters 
there is only one route on the GCT between them, that is the SAP must pass through all 
the clusters between the endpoints at least once. The complication is that the SAP may 
pass through a cluster in our model up to three times. The method is: for each cluster 
on the direct route between endpoints we consider all ways by which the path can pass 
through the cluster. 

Figure 3 shows a cluster which we take to be on the route such that the initial vertex 
lies off the ABC face and the final vertex lies off the DBC face. There is a total of nine 
ways by which a SAP can enter or exit from a face. These ways are enumerated in table 1. 
For each pair of input and output states, m and I ,  of the cluster, there is a generating 
function g,,(S), where the coefficient of S" is the number of SAP links between the entrance 
and exit. The intercluster links are counted on the entrance side. This count includes 
excursions from the other two faces, ACD and ABD. In this formulation we have 
allowed the SAP to double back on itself, which means that there may be up to three 
disconnected links of the SAP in a cluster. The generating functions are given in table 2. 
A similar set of generating functions applies should the route leave either ACD or ABD. 

Table 1. Classification of different ways by which a SAP can enter or leave the tetrahedron in 
figure 3. 

State Entering ABC Exiting DBC 

in A 
in B 
in C 
in A then out B then in C 
in A then out C then in B 
in B then out A then in C 
in B then out C then in A 
in C then out A then in B 
in C then out B then in A 

out D 
out B 
out c 
out D then in B then out C 
out D then in C then out B 
out B then in D then out C 
out B then in C then out D 
out C then in D then out B 
out C then in B then out D 
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Table 2. The generating functions g,,(S). 

s2 + 2sg + 2s3 + 2s4 4- 2s2g2 + 4 . ~ 2 ~  + 4sjg 
S2+Sg+4S2g+2S3 +2S4+Sg2+6S3g+3S2g2 

g12 
s3 + 2s2g 

s2 + 2s’ + 2Sg2 + 2S4 +4S2g + 8S3g+ 6S2g2 
s2 + sg  + s3 + 3s2g + sg2 

g26 
R I 3  
S 
g26 
g26 
g14 s2 

s4 + 2 ~ 3 ~  
g44 
g44 
g44 
g44 
g44 

listed above = 0 

At the initial (or final) cluster there is yet another generating function a(S) (or n(S)) which 
links A with the incoming state for the second cluster (or B with the outgoing state for 
the penultimate cluster) in the chain of clusters separating the origin and terminus of the 
path. Therefore, these generating functions count paths just as above, but are designed 
to take care of special conditions in the initial and final cluster. 

The a(S) (or n(S)) are constructed in exactly the same way as the other generating 
functions, by summing the contributions for all SAP which start at A (or finish at B) and 
go into state m as the SAP leaves (or enters) that cluster. The generating functions for all 
SAP from A to B in different clusters are thus given by 

As well as the SAP we have considered the free paths (FP) in this model in order to 
compare the two. The approach for FP is similar to that for SAP. We again derive generat- 
ing functions for the FP connecting various vertices in a cluster. Let us define (referring 
to figure 3) GAB(s) as the generating function for FP between vertices A and B. We 
introduce two new generating functions f(S) and g ( S ) .  f(S) accounts for all excursions 
from a particular face (say ABC) returning to the same vertex on that face. Therefore, 
f(S) generates the FP which start an excursion into neighbouring clusters from A, say, 
and which first rejoin the face ABC through vertex A. g ( S )  is the FP analogue of the 
SAP g ( S )  and generates the number of FP which execute the excursion described above, 
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but which first rejoin the face ABC via another vertex on that face, say B. We can tiow 
construct a matrix of links between vertices a, /3 : 

s + 29(S) 3 3 ( S )  s + 29(S) s + 29(S) 

s + 29(S) s + 29(S) 3 f ( S )  s + 2gS) 
A,(S) = 

\S+29(S)  s + 2 m  S + 2 9 ( S )  3 f ( S )  / 
where the columns and rows correspond to the different vertices in a cluster. Each 
matrix element corresponds to the sum of those internal and external FP which connect 
two vertices on the cluster, which touch these two vertices only once (at the beginning 
and end) and which do not visit either of the remaining two vertices. From the matrix of 
direct connections of vertices in the cluster we can construct the FP which touch A, B, C 
or D an arbitrary number of times by considering the powers of R,(S). In fact the matrix 
of generating functions G(s) for the FP between points in ABCD is just the sum of powers 
of R,(S). Formally, 

G,(S) = (I-fll(s))-t. (9) 

Turning to the evaluation of f(S) and g(S) ,  similar considerations apply as in equa- 
tion (6) .  Considering excursions out of face ACD into figure 4 and beyond, a FP which 
only touches A, C or D at the beginning and end can only cross EA, F D  or GC at the 
beginning and end, so we could consider the link matrix for EFGH and exclude excursions 
out of the face ACD. Doing this yields the following matrix : 

where the columns and rows correspond to the vertices of EFGH. Just as for G , ( S )  
we obtain a generating function G , ( S )  for all FP between EFGH by generating all powers 
of H,(S) : 

G,(S) = (I-A*(s))-  

From the definition of 3(S) and g ( S )  they must be respectively Sz times the EE and EF 
elements of G,(S) .  This gives a pair of coupled polynomial equations for f(S) and g(S) .  
The solution of these is substituted back into equation (9) to obtain GI for the first 
cluster. Again there is no ambiguity about solutions because f(S) and g ( S )  must go to 
unity as S tends to zero. This eliminates all but one pair of solutions. 

Having obtained the generating function for FP between vertices in the same cluster, 
we move on to consideration of FP between vertices in different clusters. In this case 
we analyse the route rather differently. The FPS can double back on themselves an arbi- 
trary number of times, but we can break an FP down into sections such that, for each 
successive face on a tetrahedral cluster along the main route, we divide the FP into two 
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so that the later section never comes back through that plane. Notice that in adopting 
this procedure we overlook no paths, as it is clear that every path must make a final 
exit from a cluster on the way to its endpoint, after having passed through it an arbitrary 
number of times beforehand. Hence we can construct all FP between two points by 
multiplying together the generating functions for FP which begin and end in each 
successive face along the route and which are not allowed to touch vertices further back 
along the route. Between these generating functions we sandwich a factor of S to account 
for the intercluster links. For example, if our route were 0 1 2 3  in figure 1 our first factor 
would be a vector of generating functions which take us from the starting vertex to the 
exit face of cluster 0, followed by a factor of S to take us to the entrance face of cluster 1 .  
Next is a matrix of generating functions to take us from the entrance face to the exit face 
of cluster 1 without going out of 1 towards 0;  then a factor of S to take us to 2, and 
another entrance-to-exit matrix excluding excursions towards 1, and so on. We finish 
with another vector which takes us from the entrance face of 3 to the final vertex exclud- 
ing excursions back towards 2. 

The generating vector for the first vertex to the first face is simply the appropriate 
elements of G , ( S ) .  The face-to-face matrix is constructed from the appropriate elements 
of G2(S) because returning along the route is forbidden, and the final vector comes again 
from G2(S). For instance, the generating function for FP from B in figure 3 to H in figure 4 
is expressed as 

' G2E'H(s) 

G B d s )  = ( G l B A ( S ) $  GIBC(S)? GIBD(S))S G2GH(s) ' (12) 

G 2 F H ( s j  

We have now defined the generating functions for all SAP and FP in our GCT. We wish 
to obtain from these the numbers of various kinds of paths between various points. 
This involves first solving for the generating function and then evaluating the coefficients 
of various powers of S in it. The method we used for this is based on Cauchy's integral 
theorem and involved complex integrations (Delves and Lyness 1967, Nex 1967). 

Although these methods are well known, we will outline them here. Given a pair of 
coupled polynomial equations in unknowns U and c, 

(13) 
if there is in a neighbourhood of S = 0 a unique u(S) and v(S), each of which goes to 
unity as S tends to zero, then we can draw contours C,  and C ,  around the corresponding 
neighbourhoods in U and U ,  so that for a given S: 

P , ( u ,  c, S )  = 0 P,(u, c, S) = 0,  

and 

These formulae follow from Cauchy's theorem and the uniqueness of U and U in the 
neighbourhoods. This uniqueness can be checked by counting the number of roots, N ,  
of the equations in the neighbourhoods : 
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Once the coupled equations have been solved the generating functions come from the 
multiplication of appropriate terms. The number of paths between A and Z of length n, 
which is the coefficient p, of S" in GAZ(S), also comes from Cauchy's theorem. Let C, be 
a contour around the neighbourhood of S = 0 where U and U are unique; then 

pn = & $cs dS S - " -  'G, , (S)  dS. 

In this numerical work errors can arise in two ways. For relatively nearby points, 
as n increases in equation (16) S - " - '  oscillates more and more along C,, which means 
that more points must be taken in the integration. The second source of error comes in 
paths between distant points. The generating functions for these paths are constructed 
by multiplication of many matrices, in which rounding error becomes important. 

3. Results 

A preliminary result, which gives an illustration of the effect of the self-avoiding potential 
on paths of length 25 links is given in figure 5. The contrast in the probability distributions 
for the separation of endpoints of FP (line A) and SAP is apparent. The paths were gene- 
rated on the following basis, which may be described with reference to figure 6. The 

0 n 25 

Figure 5. The probability P of finding the endpoint of a path of length 25 on the shell of 
tetrahedra which are n - 1 tetrahedra away from the starting tetrahedron. Curve A is for 
free paths and curve B is for self-avoiding paths. 

I 2 3 

B 

1 

25 

6 2 5  

Figure 6. Numbering system for paths between points in different tetrahedra 
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starting point of the path was taken as vertex A on tetrahedron 1 (the root tetrahedron). 
As mentioned above the lattice is not isotropic, so for the distribution plots of figure 5 
we enumerated paths which had their termini at vertices B, , B,, B,, . . . , B,, on the 
string of tetrahedra connected as shown in figure 6. This particular chain of clusters is 
of course contained in the lattice, and we believe that it furnishes a fairly typical statistical 
subset of paths. For the SAP the appropriate matrix of generating functions is given in 
table 2, with special generating function vectors (a,R) for initial and endpoint tetra- 
hedra given in table 3. 

Table 3. Initial (a)  and endpoint (R) vectorial generating functions for the enumeration of 
SAP in figure 5. 

I R 

21 S+g  + 2s’ + 2S3 + 2g3 + 6Sg +4gz + 10S2g+ 12Sg2 R I  S 

3 3  Q.1 

Z6 s + g + S’ +4sg + 3g2 
37 ‘6 

all other a, = 0 

R, x s  

Q3 Q, 
R, I6 x s 3  

a9 Q 7  

all other R, = 0 

The numerical results were obtained as outlined in $ 2  by multiplying generating 
function matrices and vectors and by performing the requisite complex integrations on 
the computer. The FP enumerations were carried out in similar fashion. Table 4 gives 
the answers obtained from the computer, together with an (pessimistic) error estimate 
from the integration routine. As n increases each endpoint B, finds itself on a tetrahedron 
further away from the root tetrahedron. In the GCT there are 4 x 3”-2 ‘similar’ vertices 
in the tetrahedron shell corresponding to B,. Hence for each B, in table 4 the relevant 
number of FP or SAP was weighted by multiplication by 4 x 3”-’, giving when normalized 
the probability curves of figure 5. 

Notice that when paths of length 25 change from free to self-avoiding in character, 
the most probable endpoint position moves from tetrahedron 8 to tetrahedron 15. 
There is also a very marked effect on those paths which return to the neighbourhood of 
the origin, these being severely attenuated for SAP. The problem of ring formation in 
polymer systems is of course heavily dependent on return-to-the-origin statistics. 
Usually fewer rings are detected experimentally than are predicted by theories which 
neglect excluded volume. Although we believe the GCT approach to overstate this 
depletion near the origin (since a SAP is constrained to return to the root tetrahedron 
only via the face from which it left it), the analogous effect in the proper 3D lattice (where 
returns to the origin are permitted from any direction) would lead to depressed cycliza- 
tion of polymer chains. 

The GCT treatment thus produces results which are qualitatively interesting, but 
we must enquire how such a non-physical lattice compares with respectable 3D crystal 
lattices. We turn to equations (1) and (2) which have been widely used to interpret data 
from a variety of real lattices. It has been fairly well established that fl(n) may be re- 
presented by ng. Substituting in equation (1) we find 

(19) Cn/Cn - 1 ‘V P( 1 + g/n). 
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Table 4. The computed numbers of FP and SAP between the endpoints shown in figure 6. 
The paths are of length 25 and all start at vertex A. 

Endpoints No. of SAP of length 25 Error estimate No. Of FP of length 25 Error estimate 

1.8502862 x 10'' 7 x 10-3 
3.1991095 6 x 
4,5463671 6 
5.6726674 4 
6.2828878 3 
6.1 292753 5 
5.4261620 3 
4.2 125498 1 
2,88607 12 2 
1.7382478 2 
9.1771460 x IO9 2 
4,2404206 6 x 
1.71401 12 3 
6.0609782 x 10' 3 
1.8745865 2 
5,0648 I79 x 10' 1 
1.191 7825 1 
2,4283740 x lo6 8 x 
4,2434300 x 1 O5 6 
6~2601000 x IO4 5 
7 . 5 9 9 m  103 4 
7.2600000 x I O 2  3 
5aooocoO x I O '  2 
2Qoooooo x IO0 2 

5.9776554 x 10l6 
4.8920049 
3.08829 18 
1.6617577 
7,8910301 x I O l 5  

3,3589208 
1.2939573 
4,5371561 x 1014 
1,4543108 
4.2713537 x 1013 
1.1 5 1 8952 
2.8532871 x 10'' 
6,4960113 x 10" 
1.3571 107 
26001587 x 10'' 
4,5493403 x IO9 
7,2558203 x 10' 
1,0455775 
1,3574886 x lo7 
1,5581040 x lo6 
1,5771800 x lo5 
1.3429000 x lo4 
9.6800000 x lo2 
54Jomooo x I O '  
24xmOoO x IO0 

8 x 1013 
4 x 10'l 
1 
9 x IO9  
2 

1 
2 x lo6 

2 10' 

I x ~ 0 5  
2 104 
8 x 10' 
2 
3 x 10' 
I x IO0 
1 x lo - '  
2 x 
3 10-3 
4  IO-^ 
2 10-5 
2 x lo-'  
3 
3 x 

2 x 10-1° 
1 x lo-" 

4 10-9 

Evidence suggests that g is lattice-independent and approximates to for 3D lattices 
(Domb 1969). 

By permuting the rows of the generating function matrices and vectors and by 
forming composite matrices and vectors, it was possible to modify the SAP enumeration 
program described above to generate C ,  values for our GCT. That is we were able to 
generate all SAP of length up to 25, not only for those which had their endpoints on the 
tetrahedron chain of figure 6. Figure 7 is a plot of C,/C,-l against l /n.  According to 

4 59 // 
IO 5 x lo-2 

I ln 

Figure 7. The ratios of numbers of SAP of lengths n and n - 1 .  
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equation (19) this plot should be linear with a slope yielding g and an intercept equal to p. 
In this case asymptotic behaviour sets in around n = 13 and extrapolation gives 
p = 4.59475, with uncertainty only in the last figure. For real lattices good asymptotic 
behaviour is achieved at smaller values of n (n - 7). A simple cubic lattice (which has 
the same coordination number of 6 as our lattice) gives p = 4~68260+0.00025 (Sykes 
1963) which compares reasonably with our value. Our value of g, however, is about 
9 x 10-5-very much smaller than i. Indeed the slope seems to be tending asymptoti- 
cally to zero. This we may ascribe to the decoupled nature of the GCT lattice and is 
reinforced by the small cluster size of 4 vertices. This is brought out more clearly in a 
plot of U,/U,-, against l /n  shown in figure 8. f2(n) seems to have the same form for 
real lattices as fi(n) except that g now approximates to -i (Domb 1969). That is plots 
tend to be asymptotically linear and to slope upwards (with reference to the C,/C,_ , 
plot) to intercept the vertical axis at the same value of p. In our lattice this is mani- 
festly. not the case. The plot seems to have a persistent curvature, even though we have 
enumerated paths of length up to 75 (for n = 75 the number of SAP returning to a nearest- 
neighbour vertex to the origin was computed as 4.160878563 x with an error 
estimate of 2 x lo2*). It is reasonable that the assumptions of a GCT lattice should be 
specially significant in the region of the origin, since a path can only return to the root 
tetrahedron via the face from which it last left it. 

I \  

Figure 8. The ratios of numbers of SAP of lengths n and n- 1 which return to a nearest 
neighbour of the starting vertex. 

4. Conclusions 

These preliminary results show that using the GCT approach, well defined generating 
functions and reliable computational techniques may be set up to solve enumeration 
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problems on a structure which admits excluded volume effects. Careful choice of con- 
tours for complex integrations and the use of multiple precision arithmetic in the 
computer will extend the range of path lengths which can be examined far beyond that 
reported here. The method may also prove helpful in related topics in the areas of per- 
colation theory (Domb and Sykes 1961), Ising type problems (Domb 1960) and theories 
of cooperative phenomena (Rushbrooke and Eve 1962). If the method could be extended 
for larger clusters (eg cubes instead of tetrahedra), we should expect the results to cor- 
respond more nearly to reality. 

However, the comparison with real 3D lattices indicates that in making the simplifi- 
cations implicit in the GCT approach we may well have lost an essential feature of the 
problem we wish to study. 
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